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Abstract: The key problem in locating a source of partial discharge (PD) using the acoustic emission technique is the error in
estimating the signal arrival time from the source to the multiple sensors. When the time difference of arrival approach is used
for the PD-source-localisation, some of the measured time-delay-groups will have solution for the time-difference equation in the
complex-number-field. This is due to the significant error in the arrival time estimation. Such time-delay-groups should be
considered to be invalid. In this study, a function is proposed for identifying the invalid time-delay-groups for the fixed set of
coordinates of four sensors and the specific velocity of the acoustic signal used. The negative sign of this function value
indicates that the solution is in the complex-number-field. An alternative method for identifying the invalid time-delay-groups is
by using Newton's method. The multiple sign changes of the Jacobian-determinant in the iterations of Newton's method shows
that the solution is in the complex-number-field. The proposed methods have been tested with data from the existing literature,
and results have confirmed the efficacy of these methods in the identification of the invalid time-delay-groups. Discarding such
groups of time delays improves the accuracy of statistical PD-source-localisation.

1 Introduction
Partial discharge (PD) measurements play a very important role in
the electrical quality control testing of high voltage (HV) apparatus
that employs a composite insulation. In power transformers, PDs
are both a symptom and a cause of deterioration [1]. PDs are pulse-
like in nature and they result in the emission of acoustic signals.
Acoustic emissions (AEs) are phenomena whereby transient elastic
waves are generated by the rapid release of energy from the
localised sources within a material [2]. These acoustic waves
propagate within the transformer. AEPD detection technology,
while being non-invasive, is widely used for online PD detection in
power transformers. The ability to locate the source of PD, and also
its immunity to electromagnetic interference, is vital under field
conditions [3, 4]. The cost that is incurred due to transformer
failure can be reduced by an early detection and a localisation of
the PDs [5].

The de-noising of signals that are obtained from the AE sensors
is essential, as extensive noise coupled with measured signals can
cause ambiguities in the PD-source-localisation [6–8]. The
measurement of signals in the ultra-high-frequency (UHF) range is
advantageous for a noise-immune analysis, as it is carried out in an
electromagnetically clean enclosure of an HV apparatus [9].
However, the UHF detection technique uses oil filtration valves for
the sensor insertion, and is thus invasive. The other major issue
with UHF detection is the calibration capability of this measuring
method [10, 11]. In the case of a PD detection when using AE
signals, the considerably slow propagation velocity of the acoustic
waves inside the transformer allow for a better signal arrival time
measurement [12]. False indications of a PD can be minimised
with the AE noise reduction. This can be achieved based on PD
pattern recognition, the time- and frequency-domain
characteristics, and a pulse time-of-flight analysis. The PD pattern
identification is an important tool in identifying the type of a PD
defect [13–16]. The AE sensor recordings help in distinguishing
between the different PD types which are related to the insulation
failure [17–20].

The present study has dealt with the issues that are associated
with the AEPD-source-localisation. The geometrical localisation of
a PD can be achieved by using the time difference of arrival
(TDOA) approach. In the TDOA approach, multiple sensors are

placed on the transformer's tank wall [21]. The sensor nearest to
the PD source receives signals first. Then a recording process is
triggered on all of the sensors simultaneously. The time delay in
the signal reception of the other sensors, with respect to the nearest
sensor, is measured.

The time-difference equations (non-linear sphere equations) are
formed by considering each sensor as being the centre of the
sphere. The radius of this sphere is the distance between the sensor
and the PD source. The spheres intersect with each other at the PD
location. The coordinates of the PD source (x, y, z) and the arrival
time of the acoustic signal to the nearest sensor (T) are the
unknown quantities. Since there are four unknowns, a minimum of
four sensors are required in order to locate the PD source. A system
of non-linear sphere equations is given in (1): where (xn, yn, zn), for
n = 1 to 4, form the coordinates of the four sensors, ‘v’ is the
specific velocity of the acoustic signal [2], and t12, t13, and t14 are
the time delays in the signal reception of the other sensors, with
respect to the nearest sensor [22]
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In PD-source-localisation (using a fixed set of coordinates for the
four sensors and the specific velocity of an acoustic signal), the
normal practise is to acquire many groups of signals and measure
the corresponding time delays [23]. The time delays: namely, t12,
t13, and t14 form one group. Each such group of time delays give
the location of the PD source. In general, the mean value of these
locations gives the statistical location of the PD source [23].

The key problem in locating the PD source by using the AE
technique is the error in this time-delay measurement. Estimating
time delays accurately is difficult due to the noise and the initial
oscillation of the acquired AE burst signals [24]. The acoustic
wave attenuation and the transit time are extremely sensitive to the
conditions of the medium in which they propagate [25]. The
acoustic velocity in transformer oil is not constant, but it depends
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on a complex relationship including the temperature of the oil, its
gas content, the moisture content, and also the frequency content of
the propagating signal [26].

The bias errors can be caused due to a sensor fault, a sensor
ageing, or the proximity of the PD to a certain sensor when in
comparison with the other sensors. If any sensor acquires a large
bias error in the measurement of the time delays, a convergence
problem is to be expected in the algorithms that were used for the
PD-source-localisation [27]. The errors in a time-delay
measurement are sometimes so significant that there is ‘no-
solution’ to the time-difference equations in the real-number-field.
Hence, by identifying and discarding the time-delay-groups, which
result in a solution of the system of non-linear equations in the
complex-number-field, would be advantageous in improving the
accuracy of PD-source-localisation.

Irrespective of the algorithm that was used for PD-source-
localisation, if the measured time delays are inaccurate, there will
be a significant error in the detected PD-source location. The
methods for mathematically identifying the invalid ‘time-delay-
groups’ is the contribution of this paper. This proposed method is
also applicable to UHF signals in a PD-source-localisation. The
proposed methods will have an even greater significance with an
UHF-based PD-source-localisation where estimated time delays
are in the range of nanoseconds.

2 Identification of invalid time-delay-groups
A PD source is located by solving the system of the non-linear
sphere equations. The intersection of any two spheres (out of four)
forms a plane. The PD source can be located on this intersecting
plane. Two such planes intersect in a line. The PD source can be
located on this line. The line intersects any one of the spheres in
two points. This results in a quadratic equation [24]. One of the
solutions of this quadratic equation is the PD-source location. If the
quadratic equation does not have a real solution, it implies that the
measured time-delay-group has a significant error. The function
given in (21) is derived on the basis that the nature of the roots of
the quadratic equation can be identified from the discriminant
value. The SI unit for the given function is square metres. The
constants σ1–σ19 given in (2)–(20) are determined by using known
quantities such as the coordinates of the sensor, the velocity of the
acoustic signal, together with the measured time delays. These
constants are used to find the function value given in (21). The
derivation of the function (21) and the associated constants (2)–
(20) are shown in the Appendix. However, for a measured time-
delay-group, if the function value is negative, the PD source that is
located by using those time delays will be in the complex-number-
field. Such groups of time delays should be considered to be
invalid and discarded
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The system of non-linear equation can be solved by using Newton's
method [28]. An alternative method for identifying the invalid
time-delay-groups is by solving the system of the non-linear
equations by using Newton's method. A detailed flowchart for the
identification of the invalid time-delay-group by using Newton's
method (including the proposed extension of Newton's method for
the identification of invalid time-delay-groups) is shown in Fig. 1.
When a system has complex roots, a straight line solution no
longer exists. The solution either spiral toward or spiral away from
the origin [29]. Any sign transition of the eigenvalues is reflected
in the sign change of the Jacobian-determinant. From a
computational point of view monitoring the sign changes of all the
eigenvalues are quite difficult. Therefore, an alternative and
efficient method is to monitor the sign changes of Jacobian-
determinant [30]. Hence in the present study, the sign of the
Jacobian-determinant is checked for all iterations of Newton's
method. This is indicated in Fig. 1 by highlighting this part in the
flowchart. If the sign (+ve or −ve) of the determinant value
changes from one iteration to the next, multiple times, it shows a
clear case of oscillation. These oscillations are attributed to the
non-convergence of Newton's method, due to an unavailability of a
real solution. In some special cases, when the PD source is
equidistant from the sensors or when all x, all y, or all z coordinates
of the sensors are the same, some of the constants listed in (2)–(20)
cannot be found (NaN). Hence, the function value cannot be
determined. In such cases, the invalid time-delay-groups can be
identified by this proposed alternative method involving Newton's
algorithm. 
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3 Results and discussion
To validate the proposed methods with practical data, the data from
[21] are taken and analysed. The experimental setup used in [21]
consists of a lidless transformer tank of size 120 × 80 × 100 cm3.
The tank is filled with oil, in which a needle-to-back electrode is
mounted (transformer insulating paper is inserted between the
needle and the back). The acoustic signals are generated when the
voltage is raised to 50 kV. The measurements were carried out at a
test oil temperature of 25°C. The propagation velocity of the
acoustic signal in oil at 25°C is found to be 1400 m/s. Four
acoustic sensors are mounted on the transformer tank. The
coordinates of the four sensors are S1 (80, 82, 36.5), S2 (24.5, 0,
34.3), S3 (0, 60, 38.5), and S4 (32, 120, 23) cm. The experiments
are conducted for two different PD sites. The coordinates of the
two PD sites are PD1 (58.5, 61, 24.2) and PD2 (70, 43, 52) cm.

In this paper, one of the PD-source locations (of the two), with
coordinates of (70, 43, 52) cm, is chosen for the analysis. Table 1
shows the five groups of time delays that were measured (TD-1–
TD-5) for the corresponding PD-source location, as given in [21].
The function value found by using (21) for each time-delay-group
is also shown in Table 1. Newton's method is implemented in order

to solve the system of the non-linear equations, with an initial
guess of (0, 0, 0, 0) for (x, y, z, T). For each time-delay-group, the
Jacobian-determinants for ten iterations of Newton's method are
given in Table 2. From Tables 1 and 2, it can be seen that for the
time-delay-group which has a negative function value, the
Jacobian-determinant changes its sign multiple times. This
indicates that the corresponding time-delay-group that is measured
will result in complex solution for the system of the non-linear
equations. Whenever the function value [of (21)] is positive, the
determinant will converge to a fixed value with at most one sign
change. This indicates that the system has a real solution. 

From Tables 1 and 2, it can be observed that the two groups of
time delays that resulted in a negative function value and an
oscillation of the Jacobian-determinant are TD-3 and TD-4. The
theoretical time-delay-group for the considered PD source is (110,
223, 334) μs [21]. The percentage errors in the measured time
delays for TD-3 and TD-4 are calculated using (22) and they are
shown in Table 3. From Table 3, it can be seen that the measured
time delay has a significant error

Fig. 1  Flowchart for identification of invalid time-delay-group by using Newton's method (The highlighted portion is the proposed extension of Newton's
method for the identification of invalid time-delay-group.)
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percentage error in time delay

= measured time delay − theoretical time delay
theoretical time delay × 100 (22)

The PD-source location is recalculated for the time-delay-
groups TD-3 and TD-4, by using the non-iterative method and the
iterative method (Newton's method). They are shown in Table 4.
When the results are reproduced by using the non-iterative method,
it is found that the solutions are complex numbers. However, in
published literature [24], only the real part of the complex solution
has been reported as the PD location. The PD source that is located
by using the least-square algorithm has been reported in [24]. This
is also given in Table 4. In Table 4 ‘a’ indicates that the algorithm
gives no-solution. It can be inferred from Table 4 that: (i) the non-
iterative method gives a complex solution for the time-delay-
groups TD-3 and TD-4; (ii) Newton's method gives a false PD
location for the time-delay-groups TD-3 and TD-4; and (iii) the
least-square algorithm gives no-solution for the time-delay-group
TD-3 and an erroneous location for TD-4. 

4 Conclusion
When invalid groups of time delays are used for a PD-source-
localisation:

(a) The non-iterative method will give a complex solution.

(b) The iterative methods will fail to converge and they will not
give any solution as the tolerance specified in the stopping criteria
cannot be satisfied. When tolerance is not the only stopping
criteria, solutions are obtained when the other criteria such as the
time limit or the maximum number of iterations are reached.
However, this results in a false PD-source-localisation.

Two methods for identifying such invalid ‘time-delay-groups’,
which result in the solution of the system of the non-linear
equations in the complex-number-field are reported. The suggested
methods are:

(i) Checking the sign of the function value of the proposed
function.
(ii) Checking the multiple sign changes of the Jacobian-
determinant in the iterations of Newton's method.

The proposed methods have been validated by using the data taken
from the published literature.

The initial checking of time-delay-groups that is proposed is
important, in order to avoid the false location detection of a PD
source. After identifying such time-delay-group, discarding it will
significantly improve the accuracy of the statistical PD-source-
localisation. This is irrespective of the algorithm that has been used
for the PD-source-localisation.

Table 1 Time-delay-groups given in [21] and corresponding function value computed for each time-delay-group
Time-delay-groups t12,µs t13,µs t14,µs Function value, cm2 [from (21)]
TD-1 82 250 374 3.02 × 10−1

TD-2 131 200 321 2.84 × 10−1

TD-3 145 207 351 −1.54 × 10−1

TD-4 93 191 345 −4.01 × 10−2

TD-5 206 358 253 2.12 × 103

 

Table 2 Jacobian-determinants calculated for ten iterations in Newton's method for each time-delay-group (TD-1–TD-5)
Iteration number TD-1 TD-2 TD-3 TD-4 TD-5
1 −1399.6 −1717.8 −1957.3 −1640.1 −952.38
2 −1600.7 −2120.1 −2234.4 −1922.8 −929.33
3 −956.80 −1238.4 −991.42 −932.15 −3060.5
4 −740.15 −924.57 −212.17 −405.75 −2318.5
5 −708.44 −871.30 +1218.8 −64.290 −2199.7
6 −707.73 −869.67 +378.77 +842.45 −2196.5
7 −707.73 −869.67 −552.76 +354.47 −2196.5
8 −707.73 −869.67 +232.16 +18.610 −2196.5
9 −707.73 −869.67 −1094.7 −3011.9 −2196.5
10 −707.73 −869.67 −290.60 −1487.3 −2196.5

 

Table 3 Percentage error in time delay in time-delay-groups TD-3 and TD-4
Group Percentage error

t12 t13 t14
TD-3 +31.82 −7.170 +5.090
TD-4 −15.45 −14.35 +3.290

 

Table 4 PD source located using different algorithms with time-delay-groups TD-3 and TD-4
Algorithm PD coordinates, cm

TD-3 TD-4
X Y Z X Y Z

non-iterative method 69 + 5i 42 − i 59 + 25i 73 + 3i 35 − i 67 + 14i
Newton's method 656 −5 259 88 30 125
least-square algorithm a a a 69.1 41.8 59.6

a
Indicates that the algorithm gives no-solution [21].
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7 Appendix
 
The PD source is located by solving the system of non-linear
sphere equations

x − x1
2 + y − y1

2 + z − z1
2 = vT 2 (23)

x − x2
2 + y − y2

2 + z − z2
2 = v T + τ12

2 (24)

x − x3
2 + y − y3

2 + z − z3
2 = v T + τ13

2 (25)

x − x4
2 + y − y4

2 + z − z4
2 = v T + τ14

2 (26)

Any two of the spheres intersect in a plane and the source can be
located on this intersecting plane. The equation of the plane formed
by the intersection of two spheres can be obtained by taking the
difference of the corresponding sphere equations.

Three planes are obtained by taking the difference of (23) and
(24), (23) and (25), and (23) and (26), respectively, and they are
given in (27)–(29)

2 x1 − x2 x + 2 y1 − y2 y + 2 z1 − z2 z − 2v2t12T

= x1
2 − x2

2 + y1
2 − y2

2 + z1
2 − z2

2 + v2t12
2 (27)

2 x1 − x3 x + 2 y1 − y3 y + 2 z1 − z3 z − 2v2t13T

= x1
2 − x3

2 + y1
2 − y3

2 + z1
2 − z3

2 + v2t13
2 (28)

2 x1 − x4 x + 2 y1 − y4 y + 2 z1 − z4 z − 2v2t14T

= x1
2 − x4

2 + y1
2 − y4

2 + z1
2 − z4

2 + v2t14
2 (29)

From the plane (27)–(29), the unknown variable T has to be
eliminated. The equation for T is obtained in terms of x, y, and z
from (27) and is given in (30) (see (30)) By substituting (30) in
(28) and (29), we get two plane equations (31) and (32)

2xσ1 + 2yσ3 + 2zσ5 = σ8 (31)

T = 2 x1 − x2 x + 2 y1 − y2 y + 2 z1 − z2 z − x1
2 + x2

2 − y1
2 + y2

2 − z1
2 + z2

2 − v2t12
2

2v2t12
(30)
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2xσ2 + 2xσ4 + 2zσ6 = σ9 (32)

where [these are the constants given in the body of this paper
forming (2)–(10)]

σ1 = x1 − x2

2t12v
2 − x1 − x3

2t13v
2

σ2 = (x1 − x2 )
2t12v

2 − (x1 − x4 )
2t14v

2

σ3 = (y1 − y2 )
2t12v

2 − (y1 − y3 )
2t13v

2

σ4 = y1 − y2

2t12v
2 − y1 − y4

2t14v
2

σ5 = (z1 − z2 )
2t12v

2 − (z1 − z3 )
2t13v

2

σ6 = z1 − z2

2t12v
2 − z1 − z4

2t14v
2

σ7 = t12
2 v2 + x1

2 − x2
2 + y1

2 − y2
2 + z1

2 − z2
2

2t12v
2

σ8 = σ7 − t13
2 v2 + x1

2 − x3
2 + y1

2 − y3
2 + z1

2 − z3
2

2t13v
2

σ9 = σ7 − t14
2 v2 + x1

2 − x4
2 + y1

2 − y4
2 + z1

2 − z4
2

2t14v
2

Two planes intersect in a line and the PD source can be located on
this line. The equation of the line formed by the intersection of two
planes given in (31) and (32) are obtained as follows.

Let P be a vector parallel to the required line, then

P =
i^ j^ k

^

2σ1 2σ3 2σ5

2σ2 2σ4 2σ6

P = i^ 4σ3σ6 − 4σ5σ4 − j^ 4σ1σ6 − 4σ2σ5 + k
^(4σ1σ4 −

4σ2σ3)

x0 = 4σ11 (33)

y0 = − 4σ10 (34)

z0 = 4σ12 (35)

where [these are the constants given in the body of this paper
forming (11)–(13)]

σ10 = σ1σ6 − σ2σ5

σ11 = σ3σ6 − σ4σ5

σ12 = σ1σ4 − σ2σ3

The point (x1, y1, z1) on the line can be located at z = 0 plane. Thus,
substitute z = 0 in the plane (31) and (32) to get (x1, y1, z1) given in
(36)–(38)

x1 = σ14

σ15
(36)

y1 = −σ13

σ15
(37)

z1 = 0 (38)

where [these are the constants given in the body of this paper
forming (14)–(16)]

σ13 = σ2σ8 − σ1σ9

σ14 = σ4σ8 − σ3σ9

σ15 = 2(σ1σ4 − σ2σ3)

The equation of the line formed by the intersection of two planes
given in (31) and (32) is given in (39)

x − (σ14/σ15)
(σ11/σ12)

= y + (σ13/σ15)
( − σ10/σ12)

= z = A (39)

From (39), any point on the line (x, y, z) can be obtained and is
given in (40)–(42), respectively

x = σ11

σ12
A + σ14

σ15
(40)

y = −σ10

σ12
A − σ13

σ15
(41)

z = A (42)

The value of T is obtained in terms of A by substituting (40)–(42)
in (30)

T = 2Aσ16 − σ17

2v2t12
(43)

where [these are the constants given in the body of this paper
forming (17) and (18)]

σ16 = z1 − z2 − σ10 y1 − y2

σ12
+ σ11 x1 − x2

σ12

σ17 = t12
2 v2 + x1

2 − x2
2 + y1

2 − y2
2 + z1

2 − z2
2

+ 2σ13 y1 − y2

σ15
− 2σ14 x1 − x2

σ15

The line intersects any one of the spheres in two points, resulting in
a quadratic equation. To find the quadratic equation formed by the
intersection of line given in (39) and sphere given in (23), (40)–
(43) are substituted in (23). The resulting quadratic equation in
variable A is given in (44)

A2 σ10

σ12

2

+ σ11

σ12

2

− σ16
2

t12
2 v2 + 1

+ A 2z1 − 2σ10σ18

σ12
+ 2σ11σ19

σ12
− σ16σ17

t12
2 v2

+ σ18
2 + σ19

2 + z1
2 − σ17

2

4t12
2 v2 = 0

(44)

where [these are the constants given in the body of this paper
forming (19) and (20)]

σ18 = y1 + σ13

σ15

σ19 = x1 − σ14

σ15

The nature of the roots of a quadratic equation can be identified
from its discriminant value. Therefore, the discriminant of (44) is
chosen as a function F given in (45) to identify whether the
solution lies in the real-number-field or in the complex-number-
field. This is (21) given in the body of this paper for function F
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F = 2z1 − 2σ10σ18

σ12
+ 2σ11σ19

σ12
− σ16σ17

t12
2 v2

2

− σ18
2 + σ19

2 + z1
2 − σ17

2

4t12
2 v2 4 σ10

σ12

2

+ 4 σ11

σ12

2

− 4σ16
2

t12
2 v2 + 4

(45)
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